Управление образования администрации MP «Усть-Куломский» Муниципальное бюджетное образовательное учреждение «Средняя общеобразовательная школа» с. Усть-Кулом

Принята на заседании педагогического совета от 05 июня 2024 г. Протокол № 12

Утверждаю: Директор МБОУ «СОШ» с. Усть-Кулом от 05 июня 2024 г.

Дополнительная общеобразовательная – дополнительная общеразвивающая программа «Программирование роботов» Направленность – техническая

Возраст обучающихся: 7-14 лет Вид программы по уровню освоения: базовый Срок реализации: 1 год

Составители программы: Коноплев Олег Олегович, педагог дополнительного образования

Пояснительная записка

Дополнительная общеразвивающая программа «Программирование роботов» (далее программа) разработана в соответствии следующих нормативных документов:

- Федеральный Закон от 29.12.2012 г. №273-ФЗ «Об образовании в РФ»
- Федеральный закон от 31 июля 2020 г. № 304-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации» по вопросам воспитания обучающихся».
- Федеральный Закон от 02.12.2019 г. N 403-ФЗ «О внесении изменений в Федеральный закон «Об образовании в Российской Федерации».
- Концепция развития дополнительного образования детей до 2030 года (Распоряжение Правительства Российской Федерации от 31.03.2022 г. №678-р).
- Приказ Минпросвещения России № 629 от 27.07.2022 г. «Об утверждении порядка организации и осуществления образовательной деятельности по дополнительным общеобразовательным программам».
- Постановление Главного государственного санитарного врача РФ от 28.09.2020 г. № 28 «Об утверждении Санитарных правил СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи» (п.3.6);
- Методические рекомендации по проектированию дополнительных общеобразовательных общеразвивающих программ в Республике Коми от 19.09.2019 г. № 07-13/631);
 - Устав МБОУ «СОШ» с. Усть-Кулом

Направленность программы – техническая

Сегодня потребность в программировании роботов стала такой же повседневной задачей для продвинутого учащегося, как решение задач по математике или выполнение упражнений по русскому языку. Существующие среды программирования, как локальные, так и виртуальные, служат хорошим инструментарием для того, чтобы научиться программировать роботов. Хотя правильнее сказать не роботов, а контроллеры, которые управляют роботами. Но «робот» — понятие более широкое, чем мы привыкли считать.

Для того чтобы запрограммировать робота, сначала необходимо сформировать у учащегося основы алгоритмического мышления. Для решения этой задачи лучше всего подходит популярная среда Scratch с графическим интерфейсом (http://scratch.mit.edu), которая наглядна и проста и, что немаловажно, бесплатна. В этой среде можно работать как в режиме онлайн (прямо на сайте), так и локально, установив редактор Scratch на свой ПК. Это позволит научить обучающихся программировать (создавать) игровые программы и тем самым получить ключевые навыки

программирования на этом языке, которые в дальнейшем понадобятся для программирования роботов.

На следующем этапе, в зависимости от учебных планов и оборудования, можно начинать программировать уже конкретные устройства, как виртуальные, так и реальные, в частности роботов или электронные устройства (например, «умный дом»).

Самый простой способ запрограммировать робота в Scratch описан на сайте https:// vr.vex.com («Виртуальные роботы VEX»), который также бесплатен. Здесь пользователь познакомится с датчиками и расширенными опциями движения. Представленный на этом интернет-ресурсе набор заданий (игровых полей или карт) для робота уже достаточно широк и может активно использоваться в учебном процессе.

Программная среда Scratch является универсальной для программирования многих образовательных робототехнических систем (конструкторов), и поэтому выбор бесплатной платформы VEXcode VR обусловлен именно этими факторами.

Многие производители робототехнических систем (VEX, «Роботрек» и пр.) так или иначе используют в своих редакторах кода программирование контроллеров с помощью графических блоков по аналогии со Scratch. Это упрощает переход уже на «взрослое» программирование на других языках, чаще всего на языке Си. Во многих системах переход Scratch □Си происходит автоматически, т. е. программа, написанная в Scratch, автоматически переводится в Си, и наоборот.

После того как обучающиеся освоят программирование на Scratch, можно переходить к программированию на других языках, как было уже сказано выше, прежде всего, на язык Си, так как он является основным для программирования контроллеров, в первую очередь Arduino. В этом случае может помочь бесплатная среда онлайн-моделирования Tinkercad (http://tinkercad.com).

Новизна программы заключается в том, что в образовательный процесс внедряются новые информационные технологии, что видоизменяет подход в обучении учащихся, также осуществляется интенсивное развитие их интеллекта и творческих способностей посредством стимулирования учащихся к решению разнообразных задач от когнитивных, эвристических до конструкторских.

В процессе обучения в программе прослеживается тесная межпредметная связь со школьными предметами: математикой, развитием речи, информатикой, физикой, технологией, окружающим миром и социально-бытовым обслуживанием.

Актуальность программы «Программирование роботов» заключается в том, что на сегодняшний день во всем мире активно идет развитие нанотехнологий, электроники, механики, программирования и постоянно требуются новые высококвалифицированные специалисты. Поэтому сейчас, как никогда, прослеживается повышенный интерес к инженерной профессии, формируется благодатная почва для подготовки инженерных и технических

кадров, владеющих универсальными действиями в области компьютерных технологий и робототехники. Ну а занятие по программе «Программирование роботов» в увлекательной игровой и соревновательной форме помогают пробудить в учащихся интерес к инженерным и информационным профессиям.

Отличительной особенностью данной программы является использование конструктора Робототехнический комплект на базе VEX IQ и программного обеспечения VEXcode VR и Scratch, как набора инструментов для алгоритмизации, моделирования и конструирования.

Итогом успешной работы объединения – является участие учащихся в соревнованиях по Робототехнике различного уровня, от муниципального до всероссийского.

Основные характеристики

Адресат программы — учащиеся 7-14 лет при наличии заявления о зачислении на программу от родителей (законных представителей) и согласия на обработку персональных данных. Наполняемость группы до 12 человек. Предварительных знаний и входного тестирования не требуется.

Вид программы по уровню усвоения – базовый.

Объем программы - 34 часа.

Год обучения	Количество часов в неделю	Количество недель в учебном году	Всего часов
Первый	1	34	34

Сроки реализации – 1 год.

Формы обучения – очная.

Режим занятий — Занятия проводятся один раз в неделю по 1 академическому часу. Продолжительность 1 академического часа — 45 минут.

Особенности организации образовательного процесса

Состав группы – постоянный. Форма проведения – групповая, работа в парах и индивидуально.

Цель программы: развитие алгоритмического мышления обучающихся, их творческих способностей, аналитических и логических компетенций, а также пропедевтика будущего изучения программирования роботов на одном из современных языков.

Задачи:

обучающие:

- начальное освоение компьютерной среды Scratch в качестве инструмента для программирования роботов;
- систематизация и обобщение знаний по теме «Алгоритмы» в ходе создания управляющих программ в среде Scratch;
- создание завершённых проектов с использованием освоенных навыков

структурного программирования.

развивающие:

- формирование навыков планирования определения последовательности промежуточных целей с учётом конечного результата;
- освоение способов контроля в форме сопоставления способа действия и его результата с заданным образцом с целью обнаружения отличий от эталона.

воспитательные:

- формирование умения работать над проектом в команде;
- овладение умением эффективно распределять обязанности.

Учебный план

$N_{\underline{0}}$	Название раздела, темы	Количество часов		во часов
Π /	_	Всег	Теори	Практик
П		O	Я	a
1	Раздел 1. Знакомство с платформой VEXcode VR	3	1	2
2	Модуль 2. Программирование робота на платформе VEXcode VR	4	2	2
3	Модуль 3. Датчики и обратная связь	10	3	7
4	Модуль 4. Реализация алгоритмов движения робота	10	2	8
5	Модуль 5. Творческий проект	2	-	2
6	Модуль 6. Дальнейшее развитие	5	2	3

Содержание программы

Раздел 1. Знакомство с платформой

VEXcode VR

Теория. Основные фрагменты интерфейса платформы.

Практика. Создание простейших программ (скриптов), сохранение и загрузка проекта.

Раздел 2. Программирование робота на платформе VEXcode VR

Теория. Математические и логические операторы, блоки вывода информации в окно вывода, блоки трансмиссии.

Практика. Программирование скриптов, самостоятельная работа с инструментами среды.

Раздел 3. Датчики и обратная связь.

Теория. Датчик местоположения, направления движения. Датчики цвета. Дисковый лабиринт. Датчик расстояния. Простой лабиринт. Динамический лабиринт. Управление магнитом.

Практика. Программирование скриптов, самостоятельная работа с

инструментами среды.

Раздел 4. Реализация алгоритмов движения робота.

Теория. Блок команд «Управление» и организация циклов и ветвлений. **Практика.** Проекты «Разрушение замка» и «Динамическое разрушение замка». Проект «Детектор линии».

Раздел 5. Творческий проект.

Теория. Проект.

Практика. Создание собственного проекта с использованием максимально возможного количества датчиков

Раздел 6. Дальнейшее развитие.

Теория. Основы программирования роботов на языке Си. Простейшие программы для роботов.

Практика. Программирование скриптов, самостоятельная работа с инструментами среды.

Планируемые результаты

предметные:

- освоили компьютерную среду Scratch в качестве инструмента для программирования роботов;
- систематизировали и обобщили знания по теме «Алгоритмы» в ходе создания управляющих программ в среде Scratch;
- создали завершённые проекты с использованием освоенных навыков структурного программирования.

метапредметные:

- сформировались навыки планирования определения последовательности промежуточных целей с учётом конечного результата;
- освоили способы контроля в форме сопоставления способа действия и его результата с заданным образцом с целью обнаружения отличий от эталона.

личностные:

- сформировались умения работать над проектом в команде;
- овладели умением эффективно распределять обязанности.

Комплекс организационно-педагогических условий

Календарный учебный график представлен в Приложении 1. Календарный план воспитательной работы представлен в Приложении 2. Рабочая программа воспитания представлена по ссылке https://shkolaustkulomskayar11.gosweb.gosuslugi.ru/netcat_files/65/3077/Rabochaya_programma_vospitaniya_uchaschihsya_shkoly.pdf

Условия реализации программы

Компьютерный класс, оборудованный компьютерной техникой, интерактивной доской и аудиоаппаратурой. Кабинет полностью соответствует действующим санитарным нормам и правилам. На рабочих станциях есть выход в сеть Интернет и установленное программное обеспечение, необходимое для реализации программы.

Формы контроля

- 1. Проверочные работы
- 2. Практические занятия
- 3. Творческие проекты

Характеристика оценочных материалов программы представлена в Приложении 3.

Материально – техническое обеспечение программы:

- ноутбук рабочее место преподавателя;
- рабочее место обучающегося;
- жёсткая, неотключаемая клавиатура;
- беспроводная связь Wi-Fi: наличие с поддержкой стандарта IEEE 802.11n или современнее;
- веб-камера;
- манипулятор мышь;
- предустановленная операционная система с графическим пользовательским интерфейсом, обеспечивающая работу распространённых образовательных и общесистемных приложений;
- МФУ, веб-камера, интерактивный моноблочный дисплей, , разрешение экрана: не менее 3840×2160 пикселей, оборудованные напольной стойкой.

Каталог оборудования

Функционал оборудования Внешний вид оборудования Виртуальная среда программирования роботов VEXcode VR. Предназначена для отработки навыков программирования роботов в среде Scratchu используется в дальнейшем при переходена языки программирования Python и C++ /^EX.*CODE VR* Робототехнический конструктор с программируемым контроллером, комплектом датчиков и ресурсным набором комплектующих для разработки сложных мехатронных систем и моделей роботов для участия в робототехнических соревнованиях. Предназначен для разработки мобильных роботов и организации углублённой практики программирования. Программируется в редакторе RobotC как графическими блоками, так и в текстовом режиме. Может изучаться дистанционно в среде «Виртуальные миры»

VEX V5 представляет собой пятое поколениеобразовательных робототехнических систем, разработанных с 20-летним опытом использования робототехники для обучения принципам STEM. Электроника V5 является доступной, гибкой и мощной, в ней используются самые современные технологии для обеспечения соответствующих результатов обучения.

Механическая система V5 включает в себя универсальные элементы, которые делают проектирование доступным для начинающихпользователей, в то же время предоставляя опытным разработчикам безграничные возможности проектирования

Робот-манипулятор, разработанный и производимый в России, предназначен для освоения школьниками и студентами основ робототехники и подготовки к внедрению и последующему использованию роботов в промышленном производстве.

В качестве управляющего контроллера применяется Arduino-совместимая плата, отлично зарекомендовавшая себя в линейке образовательных наборов для старшего школьного возраста. Благодаря такому подходу достигается методическая и программная совместимость с широко распространённым ПО mBlock. Оно обладает уникальными особенностями, позволяющими продуктивно работать с образовательным робототехническим оборудованием. Данное ПО основано на Scratch, но поддерживает и программирование на языке С, что существенно расширяет возрастные рамки для обучающихся, интересующихся программированием роботов

Информационное обеспечение программы:

- ормативно-правовые документы;
- итература по роботостроению, начально-техническому моделированию;
- -учебно-методический комплект;
- наглядные пособия: образцы моделей, схемы.

Форма контроля

Для определения результативности освоения программы используются следующие формы контроля: творческая работа (проект). В качестве творческой работы (проекта) учащимся лучше всего предлагать реальные конкурсные задания, т. е. те, которые предполагают последующее внедрение. Задания такого типа позволяют учащимся ощутить качественно новый, социально значимый уровень компетентности, в результате чего происходит рост самопознания, накопление опыта самореализации, развитие самостоятельности.

Формы отслеживания и фиксации образовательных результатов: готовая работа, журнал посещаемости, перечень готовых работ, фото, отзыв детей и родителей. Формы предъявления и демонстрации образовательных результатов: выставка, готовая конструкция робота, защита творческих работ.

Методическое обеспечение

Методы обучения

- практический (работа с образовательным конструктором и аппаратно-программным обеспечением);
- наглядный, объяснительно-иллюстративный (схемы, фото и видеоматериалы по робототехнике, детальный разбор готовых программ на доске);
- словесный (инструктажи, беседы, разъяснения);
- инновационные методы (поисковый, учебно-исследовательский, проектный, игровой);
- работа с информационными источниками (литература, поисковые системы и др.);
- креативные методы обучения (метод придумывания, метод случайных ассоциаций, метод гиперболизации, мозговой штурм, метод морфологического ящика, метод разнонаучного видения, метод рефлексии);
- метод авансирования успеха создание ситуации успеха для каждого ребенка, стимулирование;
- метод самостоятельной работы обучающихся по осмысливанию и усвоение нового материала;
- метод работы по применению знаний на практике и выработке умений и навыков: праздники, фестивали, концерты, конкурсы, открытые занятия;
- метод проверки и оценки знаний, умений и навыков обучающихся: повседневное наблюдение за воспитанниками, устный опрос (индивидуальный, групповой), контрольные занятия, соревнования.
- В программе применяются приемы: создание проблемной ситуации, построение алгоритма сборки модели, составления программы и т.д.

Так же программа придерживается следующих принципов обучения:

- Принцип научности, системности, последовательности;

- Принцип доступности и посильности;
- Принцип дифференциации;
- Принцип наглядности;
- Принцип сочетания различных форм обучения;
- Принцип последовательного усложнения;
- Принцип учета возрастных особенностей;
- Принцип развивающей деятельности;
- Принцип психологической комфортности;
- Принцип вариативности;
- Принцип творчества;

Современные педагогические технологии используемые в реализации образовательного процесса (личностно ориентированные, в том числе игровые, проблемное обучение, проектная, учебно-исследовательская деятельность, элементы здоровье сберегающих технологий) в сочетании с современными ИКТ-технологиями могут существенно повысить эффективность образовательного процесса, решить стоящие перед педагогом задачи воспитания всесторонне развитой, творчески свободной личности.

Характеристика оценочных материалов программы представлена в Приложении 3.

Литература (Электронные ресурсы удаленного доступа)

- Официальный сайт среды программирования Scratch [электронный ресурс] // URL:https://scratch.mit.edu/ Платформа программирования роботов VEXCode VR [электронный ресурс] // URL: https://vr.vex.com от 30.06.2022
- Информатика. Уровень 1 «Блоки» [электронный ресурс] // URL: https://education.vex.com/stemlabs/cs/computer-science-level-1-blocks от 30.06.2022
- Modkit for VEX [электронный ресурс] // URL: http://vex.examen-technolab.ru/vexiq/iqprogrammirovanie. от 30.06.2022
- бесплатная среда онлайн-моделирования Tinkercad [электронный ресурс] // URL: http://tinkercad.com от 30.06.2022
- http://www.wroboto.org/ от 30.06.2022

Календарный учебный график

$N_{\underline{0}}$	Тема занятия	Количество	Дата	Дата				
$N_{\underline{0}}$		часов	проведения	проведения				
				(по факту)				
Зна	Знакомство с платформой VEXcode VR							
1.	Вводное занятие. Техника	1						
	безопасности. Основные							
	фрагменты интерфейса							
	платформы.							
2.	Панель управления, блоки	1						
	программы, датчики,							
	игровая площадка, экран							
	датчиков и переменных,							
	кнопки управления.							
3.	Создание простейших	1						
	программ (скриптов),							
	сохранение и загрузка							
	проекта.							
Пр	ограммирование робота на п	латформе VE	Xcode VR					
4.	Математические и	1						
	логические операторы.							
5.	Блоки вывода информации в	1						
	окно вывода, блоки							
	транемиссии.							
6.	Блоки управления, блоки	1						
	переменных.							
7.	Блоки датчиков, блоки вида,	1						
,.	магнит.	1						
ПТ								
<u>да</u> 8.	гчики и обратная связь Датчик местоположения,	1						
0.	Датчик местоположения, направления движения.	1						
	-							
9.	Датчик местоположения,	1						
	направления движения.							
10.	Датчики цвета. Дисковый	1						
	лабиринт.							
11.	Датчики цвета. Дисковый	1						
	лабиринт.							
12	Датчик расстояния. Простой	1						
12.	Aut in pacetonium. Tipocton	1						

	лабиринт.					
13.	Датчик расстояния. Простой лабиринт.	1				
14.	Динамический лабиринт.	1				
15.	Динамический лабиринт.	1				
16.	Управление магнитом. Сбор фишек.	1				
17.	Управление магнитом. Сбор фишек.	1				
Pea	лизация алгоритмов движен	ия робота				
18.	Блок команд «Управление» и организация циклов и ветвлений.	1				
19.	Блок команд «Управление» и организация циклов и ветвлений.	1				
20.	Блок команд «Управление» и организация циклов и ветвлений.	1				
21.	Блок команд «Управление» и организация циклов и ветвлений.	1				
22.	Проект «Разрушение замка»	1				
23.	Проект «Разрушение замка»	1				
24.	Проект «Динамическое разрушение замка»	1				
25.	Проект «Динамическое разрушение замка»	1				
26.	Проект «Детектор линии»	1				
27.	Проект «Детектор линии»	1				
Тв	Творческий проект					
28.	Создание собственного проекта с использованием максимально возможного количества датчиков	1				

29.	Создание собственного проекта с использованием максимально возможного количества датчиков	1	
Да.	льнейшее развитие		
30.	Основы программирования роботов на языке Си.	1	
31.	Основы программирования роботов на языке Си.	1	
32.	Основы программирования роботов на языке Си.	1	
33.	Простейшие программы для роботов.	1	
34.	Итоговое занятие.	1	

Календарный план воспитательной работы

№ п/п	Направление воспитательно й работы	Наименование мероприятий	Дата выполнени я	Планированный результат	Приме чание
1.	Духовно- нравственное воспитание	Мероприятия по празднованию Дня Учителя	05 октября	Уважительное отношение к учителю	
2.	Воспитание семейных ценностей	Мероприятия по празднованию Нового года	декабрь	Повышение престижа семьи, семейных ценностей	
3.	Гражданско- патриотическо е	Мероприятия по празднованию Дня Победы	май	Формирование патриотического воспитания, бережного отношения к истории, к великому прошлому страны, к родному краю	

Характеристика оценочных материалов программы

№	Предмет	Формы и	Критерии	Показатели	Виды
- 1	оценивания	методы	оценивания	оценивания	контроля/
	оценивания	оценивания	оценивания	оценивания	аттестации
1	Теоретически	тестирование	Полнота,сис	Изложение	Промежуто
	е знания по	1	темность,пр	полученных	чный
	разделам		очностьз	знаний в	
	«Знакомство		наний	письменной	
	c		программны	форме:	
	платформой		M	Збалла—	
	VEXcode		требованиям	полное, в	
	VR»		1	системе,	
	«Программи			допускаются	
	рование			единичные	
	робота на			несуществен	
	платформе			ные ошибки,	
	VEXcode			самостоятел	
	VR»			ьно	
	«Датчики и			исправляем	
	обратная			ые	
	связь»			учащимися,	
	«Реализация			2балла—	
	алгоритмов			полное, в	
	движения			системе,	
	робота»			допускаются	
	«Творческий			отдельные	
	проект»			несуществен	
	«Дальнейшее			ные ошибки,	
	развитие»			исправляем	
				ые после	
				указания	
				педагога	
				1балл—	
				неполное,	
				допускаютс	
				я отдельные	
				существенн	
				ые ошибки,	
				исправленн	
				ые с	
				помощью	
				педагога	

2	Практически	Практическ	Степеньсамос	Збалла—	Промежуто
-	е знания по	аядеятельно	тоятельности	свободно	чный,
	разделам	сть(самосто	выполненияд	применяет	итоговый
	«Программи	ятельнаятво	ействия(умен	умение	
	рование	рческаярабо	ия)	(выполняет	
	робота на	та)		действие) на	
	платформе			практике, в	
	VEXcode			различных	
	VR»			ситуациях	
	«Датчики и			2балла—	
	обратная			применяет	
	связь»			умение	
	«Реализация			(выполняет	
	алгоритмов			действие) на	
	движения			практике,	
	робота»			возможны	
	«Творческий			незначительн	
	проект»			ые ошибки,	
	«Дальнейшее			которые	
	развитие»			учащийся сам	
				исправляет	
				1балл—	
				применяет	
				умение	
				(выполняет	
				действие) в	
				знакомой	
				ситуации (по	
				алгоритму, с	
				опорой на	
				подсказки	
				педагога)	